
RESTful Security

Dan Forsberg

Nokia Research Center

Helsinki, Finland

dan.forsberg@nokia.com, dforsber@gmail.com

Abstract— We take a look into the REST architectural style of

making scalable web applications and find out the critical

requirements that mismatch with the current web security and

privacy architecture. One of the core challenges is the inability of

the web security model to scale up with caching when millions of

users share confidential data inside communities. Our

contribution includes a new solution for achieving RESTful

security for web architecture without secure URLs. The solution

scales up the performance of web services that require

confidentiality protection and relaxes the security requirements

for data storage networks by separating the access control

decision from the data request.

REST, web security, TLS, web caching, user privacy, key

hierarchy, key derivation

I. INTRODUCTION

More applications are being developed for the web instead
of as native applications for an operating system like Windows.
Social networking is one common phenomenon for these
applications and allows people to register, create own profiles,
tune their application preferences, and invite friends to join
communities. The users upload photos and other personal data
and share information about their life, like how they think, live,
consume, and connect with different people. This brings up
security issues like user’s privacy, data confidentiality, identity
verification (authentication), and access authorization for
handling all this personal data. Who is able or allowed to
access the data? What is considered to be private and public
and how it is followed? It is crucial that scalable security is
taken into account and built into the architecture of applications
and services like these in the open internet with billions of
users.

The current methods for implementing security include user
authentication [1] and Transport Layer Security (TLS) [2] for
protecting sessions over the Internet. Certificates are used to
authenticate the web site URLs for the clients, but the scheme
wrongly relies on human understanding of the links and
certificates and thus phishing attacks have emerged. Web
cookies [3] are used to e.g. transfer session information and to
carry authorization information in the HTTP requests during
the session lifetime. The personal data of the users is usually
stored and in many cases transferred unencrypted.
Furthermore, users have weak or no control over the data that
is once transferred to the services. If a malicious user is able to
access another person’s (victim) picture or video and put it into
the Internet the victim has small or no chances to delete the
content once it has spread around. The only defense may be a
secret URL, transferred in plain text over the network, which
may not be good enough in some cases as the URLs can be

sniffed by others. Actually, the users may copy and publish the
links by themselves.

There are many ways to design and implement web
applications. Many applications are implemented with the
model of Remote Procedure Calls (RPC over HTTP) that are
executed on the server side and thus increases the load. This
does not help service providers to easily scale up their services
for a higher number of clients, which is a crucial requirement
for today’s web applications. One of the answers to this
problem is Roy Fielding’s Representational State Transfer
(REST) [4..7] architectural style for web applications and has
become an important set of requirements for modern web
application developers and designers (e.g. REST APIs). REST
style brings clarity on how to build highly scalable web
applications. For example, it allows servers to be more stateless
and utilizes the benefits of caching with more static Uniform
Resource Identifiers (URI) [8]. In REST style applications the
URIs can be referenced after the session as well in contrast to
many web applications, where the dynamic URIs are used and
their relevance is low after the session ends. Even REST is
described as an architectural style, it implies multiple
requirements for web applications. It efficiently utilizes the
HTTP protocol (version 1.1 [9]) methods to handle data and
requests in contrast to web applications that use single GET
method to invoke remote scripts with arguments to modify and
read data.

There is a gap between the REST architecture and the
current security features of today’s web. The security
architecture does not naturally align with the REST
architecture in the sense that secure sessions create session
specific keys but more static data that can be stored in web
caches can not be confidentiality protected and fetched from
the caches at the same time. This heavily reduces the scalability
of the REST architectural style for applications and services
that require access control to the data and for this reason
provide the data through e.g. TLS [2] tunnels or require HTTP
authorization. In this paper we identify and address some of the
challenges that rise up from this gap.

In section 2 we describe the REST architectural design
style and web caching in more details. In section 3 we describe
some possible solutions to overcome the limitations of the
current security architecture that also support the REST
architectural style for web applications. Furthermore, we
analyze our solution in section 4 and list some issues for further
study. We conclude this paper in section 5.

II. REST ARCHITECTURAL DESIGN STYLE ALIGNS WITH

WEB CACHING

HTTP version 1.1 has four main methods for client
requests, namely GET, PUT, POST, and DELETE (there are
also other methods like HEAD, CONNECT, and TRACE,
which we do not address in this paper). The REST handles all
data as URIs and the HTTP methods are applied to them. To
make this more general, the HTTP GET can be seen as similar
to read data, PUT similar to create/replace data, POST similar
to append to/create data, and DELETE similar to remove data.
GET (also HEAD) is a safe read method, which does not alter
the data, but all the other methods update the data in some
ways and can be thought as write methods (i.e. append, replace,
or remove).

Web content caching [10] with the URIs assigned to the
data items is an important part of RESTful thinking and applies
to the HTTP GET method. Data that needs to be presented to
the user via the browser is fetched with the HTTP GET method
from the web servers. Between the client and the server there
can be web proxies and web caches that may already contain
the requested URI presented in the GET request. Caches reduce
bandwidth usage and especially the server load, and shows as
smaller lag to the user. On the other hand the freshness of the
fetched data needs to be known.

There are multiple web caching models. User agent caches
are implemented in the web browsers in the clients themselves
and are user specific. Proxy caches (also known as forward
proxy caches) are most known to normal users as they require
configuration of the browser (i.e. proxy settings). Interception
proxy caches or transparent caches are variants that do not
require setting up the clients. On the other hand gateway
caches, reverse proxy caches, surrogate caches, or web
accelerators are closer to or inside the server site and not
visible to the clients either. There are protocols to manage the
contents of the web caches in a distributed manner, such as
Internet Cache Protocol (ICP) [10, 11] and Hypertext Caching
Protocol (HTCP) [12]. Further on, the web caches can work
together to implement Content Delivery (or Distribution)
Networks (CDN). These become very important when the
scalability of video on demand services like YouTube
(www.youtube.com) etc. is considered.

HTTP protocol includes mechanisms to control caching.
Freshness ("cache lifetime") allows the cache to provide the
response to the client without re-checking it on the origin
server. Validation is used in the cache to check from the origin
server whether the expired cache entry is still valid. Then, an
important feature for the RESTful architectural model is the
way how cache entries may become invalidated. Invalidation
happens usually as a side effect when HTTP PUT/ POST/
DELETE request is applied for the respective cached URI [9].
Since these requests modify the respective URI the cache can
not provide the cached version of the URI back to the client but
let the origin server handle the write operation and provide the
response (note that there may be other web caches on the
routing path that are not traversed, especially user agent and
proxy caches). On the other hand if the HTTP GET method is
designed to be used as an RPC method to call a script in the
server for writing data, the cache may think it has a valid

response in the cache already for the URI and return an old
response. This may be ok for the application or service logic.
REST architectural style of implementing web applications
gives a good guidance for the designer and developers. It is
about understanding the nature of the web and not misusing it.
It also discourages the usage of scripting for all user session
specific data handling as the content based on the results from
scripts are not generally cached.

The REST style encourages having a separate URI for each
data item, like a single photo or entry in a database. One of the
reasons is that different data items can be cached separately,
e.g. a user’s image in the cache does not expire even if the user
changes the profile data information in the web application
database. This encourages developers to apply HTTP PUT/
POST/ DELETE to a most accurate URI in question. In
contrast one might design the web application in such a way
that all PUT/ POST/ DELETE queries go to the same root URI
but with different arguments for the script. This may flush the
cache [9] as the data is updated with these methods and the
current cached entry may become invalid. Using scripts also
makes effective caching hard for all entries addressed with the

root URI if for example the mod_cache [13] is used with
Apache web server. Take this search query URI as an example:

 (1) http://mypics.com/?cmd=create&cat=music&sub=rock&title=acdc

and compare it with the following examples:

 (2) http://mypics.com/music/rock/?title=acdc

 (3) http://mypics.com/music/rock/acdc

We see that the first example, if used with PUT/ POST, may
disable cached copies of all entries for the mypics.com (write
operation on that URL updating the content), whilst the second
only for the rock subcategory in the music category. The last
example row is the simplest and follows the RESTful design,
e.g. if used with PUT. All GET, PUT, POST, and DELETE can
be invoked with the same URI and the web application knows
what to do with it.

A. Web security and caching

There are message based end-to-end security mechanisms,
like Secure / Multipurpose Internet Mail Extensions (S/MIME)
[14], Cryptographic Message Syntax (CMS) [15], and Pretty
Good Privacy (PGP) email protection program
(www.pgp.com) based on public keys originally developed by
Philip Zimmermann back in 1991. S/MIME is a public key
based standard for encrypting and signing emails, it adds the
security extensions into the MIME. CMS is a more general
specification for message level authentication, signing, and
encryption. CMS supports shared secrets in addition to public
key based solutions. These are application level security
mechanisms and not generally implemented for securing web
content.

With TLS the secure sessions are user specific and keys are
generated on the fly. The content that is encrypted again and
again when pushed to the secure tunnel. The data can not be
cached as the web caches can not access the data inside the
secure tunnel. On the other hand the client accessing the
content gets the data and can further copy it locally or

distribute it further (even the decryption keys themselves). The
former problem is about content protection and access control,
latter problem about user control and platform security and
relates to DRM, which is out of the scope of this paper. Thus,
in this paper we concentrate on the former problem, namely
caching content that requires access control and confidentiality
protection.

III. DIRECTORY SPECIFIC SYMMETRIC CONTENT

ENCRYPTION KEYS

Let’s say we build a "mypics.com" web application in a
RESTful style and make the URIs in a way that the pictures
can be easily cached for scalability reasons. But with the
current web technology if they are cached, anybody can get the
pictures if they know the correct (secret) URI even if they were
not authenticated users. So, we have a problem. If we apply
secure sessions with TLS and transfer all the pictures inside the
secure tunnel, caching is effectively disabled as the caches
along the path can not intercept the pictures. Also, the pictures
are encrypted multiple times for each client accessing them
(redundant encryptions). But on the other hand the pictures are
safe and user sessions authenticated. Another possible
improvement solution is to disable general caching and apply
application specific caching near the server where the secure
session ends. However, this is not a nice solution as it requires
application platform specific caching and does not utilize the
benefits of proxy caches. And still, it also requires that the
server encrypts the pictures as they go through the tunnel for
each session separately (redundant encryptions). It also puts
security requirements on the data in the servers behind access
control.

In user communities photos are generally shared among
trusted people only. This requires access control to the photos
and user authentication. Also, commercial sites that require
users to pay for the content want to restrict the content to the
customers that pay for it but at the same time want to make
their service architecture as scalable as possible to allow higher
growth of customer base. There is a mismatch between these
two targets when web caching is considered. I.e. web caching
is not possible for the encrypted content.

Our solution sketch to this problem is simple. We create a
content protection key, optionally bind the lifetime of that key
with the cache lifetime of the URI, and provide the key to those
clients who are authorized to access the ciphered content. All
pictures (or e.g. videos with progressive download) are
encrypted with the content protection key and can thus be
stored outside the service provisioning pool. We require secure
user authentication and content access authorization decisions
(e.g. through TLS tunnels or with HTTP authentication and
authorization mechanisms). The actual data is then accessed
without secure HTTP and thus served for the clients directly
outside secure TLS tunnel or HTTP authorization headers even
from any available cache that may have the encrypted data
stored. In this model the secure HTTP session acts as a control
channel where the data protection keys are provided for the
clients after proper authentication and authorization. We
support the REST architectural style and allow all clients to
access the encrypted data content URIs without access control.
Thus, the data is not usable for the clients if they do not have

the keys to decrypt the content. Note that the end result of this
model is similar to current web security model with TLS,
except that the (a) servers do not do redundant encryptions and
that the (b) caching of the data under access control is possible
without any needs to make the URLs secret.

We use key hierarchies together with directory hierarchies
for supporting REST architectural style. In this model we have
a root key root-K for the root directory
("http://www.domain.com/") and derive next level keys along
with the directory structure. For example:

http://www.domain.com/ : root-K

…/pictures/ : pictures-K = H(Root-K, "pictures")

…/pictures/john/ : john-K= H(Pictures-K, "john")

…/pictures/john/23.jpg : 23.jpg-K = H(John-K, "23.jpg")

…/pictures/mary/ : mary-K = H(pictures-K, "mary")

…/pictures/mary/face.jpg : face.jpg-K = H(mary-K, "face.jpg")

Here the function H is a one-way key derivation function
(KDF) used for getting next level keys. The keys are bound to
the directory and file names. This allows access control based
on every single file or set of directories below a root directory.
Each client knows how to create the next level key from the
root key. Thus, John could set the policy to allow Mary to get
the key John-K, but set the policy to allow Jane to see only the
picture 23.jpg and thus get the key 23-K only. Note that the
names of the keys are in the scope of the directory namespace,
i.e. face.jpg-K key is not unique name until it is bound with the
directory of /pictures/mary/.

A. Extending the key hierarchy

We initially wanted to align the web security architecture
with the REST architectural style without loosing the existing
content protection and access control features. In our model the
content is protected and the keys are provided only for those
clients or users who have authorization to access the content.
Our model also scales well to different levels of security
policies where the subdirectories and files are protected with
separate keys based on a key hierarchy. However, the
disadvantage of this model is that once a client gets a key for a
directory all the subdirectories are also accessible for the user.

The model could be extended to break the key hierarchy in
these cases and create a new and independent root key for the
subdirectory that requires access control separation from the
parent directory’s access control. This would also require the
client to understand that now the directory key can not be used
to create subdirectory key for this particular subdirectory. The
immediate analogy to the web server configuration would be to
use the .htaccess file and extend it to support a mechanism,
which describes the key hierarchy relation for that particular
directory. For example the .htaccess file could say that the
content protection key is NULL (no encryption), PARENT
(use the parent directory key to derive the subdirectory key), or
ROOT (start a new key hierarchy for this directory).

The downside of this extension is that the client does not
know whether new key is needed or if the existing parent key
can be used. Without this extension the client could always
apply the parent key for directory hierarchies with assigned
root keys. One way to implement this extension would be to

extend HTTP headers with information about the key hierarchy
root, adding a key identifier of the respective key, or both.

IV. DISCUSSION

There are multiple advantages in our approach of content
protection based on separate content protection keys delivered
to clients via secure authenticated and authorized sessions. First
and most important advantage is that this way the web security
architecture could be better aligned with the REST
architectural style. Doing this enables all the caching scalability
advantages of the REST architectural design style.

Our model reduces server load considerably with content
that requires confidentiality protection. When using a content
protection key, there is no need to encrypt the same content
again and again over a TLS session. The server needs to protect
the content once per caching lifetime, which can be very long
for content that does not change, e.g. picture and video files.

Clients can get the content from local or remote caches
even without logging in into the web application once they
have received the content protection keys. This also effectively
enables offline use cases for web applications that require
content protection and access authorization. On the other hand
our model also allows content pre-distribution to clients and
getting the access rights and content decryption key later on.
This may have potential to improve the user experience on
some services, where the content can be downloaded in the
background and displayed for the user immediately when
decryption keys are available (pre-fetching or parallel fetching
while user is authenticating).

There are multiple implementation alternatives. Initially if a
web application developer wants to use this model of encrypted
content, the encryption, decryption, and key management could
be done on the application layer (e.g. with Javascript and
plugins). Another approach could be to standardize needed
extensions with the HTTP protocol. There is lots of work to be
done for further defining how this model would work in
practice and actually verifying how different caching
technologies behave. CMS could be used for the actual content
encryption (and integrity protection).

V. CONCLUSION

We analyzed the web security architecture model within the
scope of REST and concluded that the two of them are not well
aligned. To overcome this mismatch, we sketched a solution,
which consists of hierarchical content protection keys that
share the lifetime of the cached context and are delivered to the
clients through secure HTTP after proper user authentication.
We analyzed this solution in high level and gave some topics
for further study on this area. Our solution seems to give a
promise of improved web application scalability in cases where
access control and content protection needs to be applied for all
content. This is a very important topic as there are multiple
content distribution network providers and hundreds of
millions of files that require access authorization. We also
realized that it is not easy to find out how caching works in real
life as there are many configuration options.

Our solution reduces the need to do HTTP authorization
checks for the data as access is controlled with the decryption
key. In effect our solution is analogical to secret URI usage
schemes except that instead of adding the secret part into the
URI, we use key to secure the content itself, which better
fulfills the privacy and data confidentiality needs. Our solution
could also be used e.g. with OAuth [16], where the Access
Token is replaced with the content decryption key.

Getting the data to the client is only part of the solution of
access control to the content. Users can copy the images and
videos to other users, which essentially bypasses the access
control of the web applications. This said, we note that our
solution is aligned with the model of the current web security
model but adjusts it to match better with web caching for data
that requires confidentiality protection.

REFERENCES

[1] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,
Luotonen, A., Sink, E. and L. Stewart, HTTP Authentication: Basic and
Digest Access Authentication, Internet RFC 2617, June 1999. URL:
ftp://ftp.isi.edu/in-notes/rfc2617.txt

[2] T. Dierks, C. Allen, The TLS Protocol Version 1.0; Internet RFC 2246,
January 1999, URL: http://tools.ietf.org/html/rfc2246

[3] "HTTP State Management Mechanism"; D. Kristol, L. Montulli,
October 2000, Internet RFC 2965, URL:
http://tools.ietf.org/html/rfc2965

[4] "Architectural Styles and the Design of Network-based Software
Architectures", Roy Fielding, Ph.D. thesis. URL:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[5] Ryan Tomayko, "How I explained REST to My Wife", Referenced
2008-11-18, URL: http://tomayko.com/articles/2004/12/12/rest-to-my-
wife

[6] Stefan Tilkov, "A brief introduction to REST", Referenced 2008-11-18,
URL: http://www.infoq.com/articles/rest-introduction

[7] Leonard Richardson, "RESTful Web Services", Referenced 2008-11-18,
URL: http://www.amazon.com/RESTful-Web-Services-Leonard-
Richardson/dp/0596529260

[8] T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform Resource
Identifiers (URI): Generic syntax. Internet RFC 2396, Aug. 1998, URL:
http://tools.ietf.org/html/rfc2396

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, "HTTP 1.1 Protocol", Internet RFC 2616, URL:
http://www.w3.org/Protocols/rfc2616/rfc2616.html)

[10] D. Wessels, K. Claffy, "Internet Cache Protocol (ICP), version 2";
Internet RFC 2186, Sept 1997, URL: http://tools.ietf.org/html/rfc2186

[11] D. Wessels, K. Claffy, "Application of Internet Cache Protocol (ICP),
version 2", Sept 1997, Internet RFC 2187, URL:
http://tools.ietf.org/html/rfc2187

[12] P. Vixie, D. Wessels, "Hyper Text Caching Protocol (HTCP/0.0)",
January 2000, Internet RFC 2756, URL:
http://tools.ietf.org/html/rfc2756

[13] Apache HTTP server mod_cache module documentation; Referenced
2008-11-18. URL: http://httpd.apache.org/docs/2.2/caching.html

[14] B. Ramsdell, "Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Message Specification", Internet RFC 3851, July 2004,
URL: http://www.ietf.org/rfc/rfc3851.txt

[15] R. Housley, "Cryptographic Message Syntax (CMS)", Internet RFC
3852, July 2004, URL: http://www.ietf.org/rfc/rfc3852.txt

[16] Mark Atwood & al., “OAuth Core 1.0"; URL: http://oauth.net/core/1.0/,
December 4, 2007

